A SPACE-EFFICIENT, LOCALITY-PRESERVING AND DYNAMIC DATA STRUCTURE FOR INDEXING K-MERS

Igor MARTAYAN, Bastien CAZAUX, Antoine LIMASSET \& Camille MARCHET
November 21, 2023

SeqBIM 2023 - Lille

LU Université
de Lille

Motivation

Plenty of compact data structures for storing k-mers

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

Motivation

Plenty of compact data structures for storing k-mers ...but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway \& Bromage 11]

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$ $\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient
- index(ATAACGCCA) $=49,556$
- index (TAACGCCAT $)=198,227$
\rightarrow average distance of $4^{k} / 3$

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway \& Bromage 11]

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$ $\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient
- index(ATAACGCCA) $=49,556$
- index(TAACGCCAT) $=198,227$
\rightarrow average distance of $4^{k} / 3$
How can we improve this approach?

WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer
- dynamic: support insertion and deletion after construction
- efficient queries:
- membership
- enumeration
- insertion
- (deletion)
- locality-preserving: reduce cache misses when querying consecutive k-mers

PRESERVING K-MER LOCALITY

A LOCALITY-PRESERVING ENCODING OF K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$

- $x \mapsto(\langle x\rangle$, rotation index $)$ is a bijective transformation
- necklaces of consecutive k-mers share long prefixes

A CLOSER LOOK AT THE LOCALITY OF NECKLACES

AACGTCATCTCTCATTCTGGTCGTTCTTCCT AACGTCATCTCTCATTCTGITCGTTCTTCCT AACGTCATCTCTCATTCTGTGCGTTCTTCCT AACGTCATCTCTCATTCTGTGAGTTCTTCCT AACGTCATCTCTCATTCTGTGACTTCTTCCT AACGTCATCTCTCATTCTGTGACATCTTCCT AACGTCATCTCTCATTCTGTGACACCTTCCT AACGTCATCTCTCATTCTGTGACACGTTCCT AACGTCATCTCTCATTCTGTGACACGCTCCT AACGTCATCTCTCATTCTGTGACACGCACCT AACGTCATCTCTCATTCTGTGACACGCAGCT AACGTCATCTCTCATTCTGTGACACGCAGGT AACGTCATCTCTCATTCTGTGACACGCAGGG ACACGCAGGGTACGTCATCTCTCATTCTGTG

Size of common prefix
between necklaces of successive k-mers ($k=31$)

RaNKING NECKLACES TO IMPROVE COMPRESSION

The number of necklaces of size k on an alphabet with σ letters is $\sim \frac{\sigma^{k}}{k}$
so only a fraction $\frac{1}{k}$ of the universe is actually used

RaNKING NECKLACES TO IMPROVE COMPRESSION

The number of necklaces of size k on an alphabet with σ letters is $\sim \frac{\sigma^{k}}{k}$ so only a fraction $\frac{1}{k}$ of the universe is actually used

Ranking: given a necklace $\langle x\rangle$, find i s.t. $\langle x\rangle$ is the i-th smallest necklace of size k We can compute the rank in $\mathcal{O}\left(k^{2}\right)$ time [Sawada \& Williams 17] (Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs $\mathcal{O}\left(k^{2}\right)$ queries

COMPRESSING SPARSE INTEGER SETS

Compressing sparse integer sets with Elias-Fano encoding

[Elias 74, Fano 71]

- separate the high bits and low bits
- compress them with different methods

We choose the size of the low bits as $l=\left\lceil\lg \frac{u}{n}\right\rceil$

- n is the number of elements
- u is the size of the universe
e.g. $u=4^{k}$ for k-mers
$\{2,3,210,216,231,265,491,499\}$ 000000010 $0000: 000011$
; 011 '010010
slowly $011: 011000$
increasing $011: 100111$
$100: 001001$
'111 101011
,111,110011

ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

$$
E F(n, u)=2 n+n\left\lceil\lg \frac{u}{n}\right\rceil
$$

$$
\text { e.g. for } n=10^{10} \text { and } u=4^{31} \text {, EF uses } 31 \text { bits / item }
$$

Information theoretic lower bound

$$
\begin{aligned}
\lg \binom{u}{n} & \approx n \lg e+n \lg \frac{u}{n} \\
& \approx 1.44 n+n \lg \frac{u}{n}
\end{aligned}
$$

Note that the bound can get lower if we have additional knowledge about the distribution.

PARTITIONING SPARSE INTEGER SETS

Partitioning sparse integer sets [Ottaviano \& Venturini 14]

lot of empty regions

Partitioning sparse integer sets [Ottaviano \& Venturini 14]

Split the sequence into smaller blocks

Partitioning sparse integer sets [Ottaviano \& Venturini 14]

Split the sequence into smaller blocks, choose the best encoding:

- for sparse blocks: Elias-Fano ; $2 n+n\left\lceil\lg \frac{u}{n}\right\rceil$ bits
- for dense blocks: plain bitset ; u bits
- for full blocks: lower bound + size is enough

Partitioning sparse integer sets [Ottaviano \& Venturini 14]

Split the sequence into smaller blocks, choose the best encoding:

- for sparse blocks: Elias-Fano ; $2 n+n\left\lceil\lg \frac{u}{n}\right\rceil$ bits
- for dense blocks: plain bitset ; u bits
- for full blocks: lower bound + size is enough

Computing the optimal partition

- optimal solution in $\mathcal{O}\left(n^{2}\right)$ using dynamic programming
- $(1+\varepsilon)$-approximation in $\mathcal{O}\left(n \cdot \frac{1}{\varepsilon} \ln \frac{1}{\varepsilon}\right)$

Dynamic version \& complexity recap [Pibiri \& Venturini 17]

[Pibiri \& Venturini 17] presents an approach to make the partitions dynamic using o(n) extra space
\rightarrow WIP, no practical implementation available yet

Query complexity

- membership and successor in $\mathcal{O}(\lg \lg n)$
- insertion and deletion in $\mathcal{O}(\lg n / \lg \lg n)$

Dynamic version \& complexity recap [Pibiri \& Venturini 17]

[Pibiri \& Venturini 17] presents an approach to make the partitions dynamic using o(n) extra space
\rightarrow WIP, no practical implementation available yet

Query complexity

- membership and successor in $\mathcal{O}(\lg \lg n)$
- insertion and deletion in $\mathcal{O}(\lg n / \lg \lg n)$

PARTITIONING NECKLACES: A SIMPLE ALTERNATIVE TO RANKING

- ranking saves $\lg k$ bits / k-mer but costs $\mathcal{O}\left(k^{2}\right)$ / query
- partitioning typically saves $\frac{1}{2} \lg k$ bits / k-mer

CONCLUSION

TAKE-HOME MESSAGES

Using necklaces to represent k-mers

- preserves locality
- improves compression

Partitioned sparse sets

- fit in well with necklace locality
- can support dynamic operations

Future steps

- efficient implementation of the dynamic partitions
- batch necklace computation
- batch rank computation
- subquadratic ranking?
- bound on the necklace distance

TAKE-HOME MESSAGES

Using necklaces to represent k-mers

- preserves locality
- improves compression

Partitioned sparse sets

- fit in well with necklace locality
- can support dynamic operations

Future steps

- efficient implementation of the dynamic partitions
- batch necklace computation
- batch rank computation
- subquadratic ranking?
- bound on the necklace distance

Thank you!

APPENDIX

References I

Filanko, Jarno N, Simon J Puglisi \& Jaakko Vuohtoniemi (2022). "Succinct k-mer sets using subset rank queries on the spectral burrows-wheeler transform". In: bioRxiv, pp. 2022-05.
Conway, Thomas C \& Andrew J Bromage (2011). "Succinct data structures for assembling large genomes". In: Bioinformatics 27.4, pp. 479-486.

Elias, Peter (1974). "Efficient storage and retrieval by content and address of static files". In: Journal of the ACM (JACM) 21.2, pp. 246-260.
Fano, Robert Mario (1971). On the number of bits required to implement an associative memory. Massachusetts Institute of Technology, Project MAC.
國 Ferragina, Paolo, Igor Nitto \& Rossano Venturini (2011). "On optimally partitioning a text to improve its compression". In: Algorithmica 61, pp. 51-74.

References II

國
Ottaviano，Giuseppe \＆Rossano Venturini（2014）．＂Partitioned elias－fano indexes＂．In： Proceedings of the 37th international ACM SIGIR conference on Research \＆development in information retrieval，pp．273－282．

国
Pibiri，Giulio Ermanno \＆Rossano Venturini（2017）．＂Dynamic elias－fano representation＂．In： 28th Annual symposium on combinatorial pattern matching（CPM 2017）．Schloss Dagstuhl－Leibniz－Zentrum fuer Informatik．
回 Sawada，Joe \＆Aaron Williams（2017）．＂Practical algorithms to rank necklaces，Lyndon words， and de Bruijn sequences＂．In：Journal of Discrete Algorithms 43，pp．95－110．

A closer look at Elias-Fano encoding [Elias 74, Fano 71]

$S=\{2,3,251,403,406,407,995,999\} \quad n=8 \quad u=1000 \quad l=\left\lceil\lg \frac{u}{n}\right\rceil=7$ bits

Optimal partition as a shortest path [Ferragina et al. 11]

- $V=\llbracket 1, n \rrbracket \quad E=$ $\{i<j ; i, j \in V\}$
- $w_{i, j}=$ cost to encode $S[i, j]$

Computing the optimal partition

- optimal solution in $\mathcal{O}(|V|+|E|)=\mathcal{O}\left(n^{2}\right)$ using dynamic programming
- $(1+\varepsilon)$-approximation in $\mathcal{O}\left(n \cdot \frac{1}{\varepsilon} \ln \frac{1}{\varepsilon}\right)$ by sparsifying the graph

