USING NECKLACES TO BUILD A LOCALITY-PRESERVING AND DYNAMIC INDEX FOR *K*-MERS

Igor MARTAYAN, Bastien CAZAUX, Antoine LIMASSET & Camille MARCHET

December 14, 2023

Seminar on Lyndon words — Rouen

DNA Sequencing & Tokenization with *k*-mers

DNA samples
$$\checkmark$$
 \rightarrow

We typically index the words of size *k* (*k*-mers) instead of the sequence itself.

In practice, we usually consider $k \leq 63$ so that each k-mer fits inside a machine word. CTGAA TGAAA GAAAT AAATG

MOTIVATION OF THIS WORK

Plenty of compact data structures for storing *k*-mers ...but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

[Conway & Bromage 11]

- we can see *k*-mers as integers in $\llbracket 4^k \rrbracket$ A \rightarrow 00 C \rightarrow 01 G \rightarrow 10 T \rightarrow 11
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- $\cdot\,$ it's not really dynamic
- it's not cache-efficient
 - index(ATAACGCCA) = 49,556
 - index(TAACGCCAT) = 198,227
 - \rightarrow average distance of $4^k/3$

[Conway & Bromage 11]

- we can see *k*-mers as integers in $\llbracket 4^k \rrbracket$ A \rightarrow 00 C \rightarrow 01 G \rightarrow 10 T \rightarrow 11
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- it's not really dynamic
- \cdot it's not cache-efficient
 - index(ATAACGCCA) = 49,556
 - index(TAACGCCAT) = 198,227
 - \rightarrow average distance of $4^k/3$

How can we improve this approach?

WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer
- dynamic: support insertion and deletion after construction
- efficient queries:
 - membership
 - \cdot enumeration
 - \cdot insertion
 - deletion
- locality-preserving: reduce cache misses when querying consecutive *k*-mers

PRESERVING LOCALITY WITH NECKLACES

A LOCALITY-PRESERVING ENCODING OF K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x \rangle = \min_{0 \le i < k} x^{(i)}$

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x \rangle = \min_{0 \le i < k} x^{(i)}$

- $x \mapsto (\langle x \rangle, \text{rotation index})$ is a reversible transformation
- necklaces of consecutive k-mers share long prefixes

AACGTCATCTCTCATTCTGGTCGTTCTTCCT AACGTCATCTCTCATTCTGTTCGTTCTTCCT AACGTCATCTCTCATTCTGTGCGTTCTTCCT AACGTCATCTCTCATTCTGTGAGTTCTTCCT AACGTCATCTCTCATTCTGTGACTTCTTCCT AACGTCATCTCTCATTCTGTGACATCTTCCT AACGTCATCTCTCATTCTGTGACACCTTCCT AACGTCATCTCTCATTCTGTGACACGTTCCT AACGTCATCTCTCATTCTGTGACACGCTCCT AACGTCATCTCTCATTCTGTGACACGCACCT AACGTCATCTCTCATTCTGTGACACGCAGCT AACGTCATCTCTCATTCTGTGACACGCAGGT **A**ACGTCATCTCTCATTCTGTGACACGCAGGG ACACGCAGGGTACGTCATCTCTCATTCTGTG

PRACTICAL USE OF NECKLACES

OVERVIEW OF OUR DATA STRUCTURE (CBL)

rank Quotiented data structure qQuery x: 1. compute $\langle x \rangle$ pointers to 2. split $\langle x \rangle$ as $q \parallel r$ containers 3. look for (q, r)packed vectors sparse bitvector for suffixes

for prefixes

7/12

Basic approach: compute every cyclic rotation and select the smallest in $\mathcal{O}(k)$. $\rightarrow \mathcal{O}(nk)$ for *n* queries

Better approach: amortize the computation cost for consecutive queries.

Key observation

Given a fixed m, if $\langle x \rangle$ does not start at one of the m-1 last positions of x, its prefix of size m is the smallest factor of size m in x.

Good news: we can keep track of the smallest factors of size m in $\mathcal{O}(1)$ amortized time using a monotone queue.

Accelerating the computation of consecutive necklaces

Faster necklace computation

Only consider the cyclic rotations that start:

- \cdot at one of the smallest factors of size m
- \cdot at one of the m-1 last positions

Useful property [Zheng et al. 20]

Assuming $m = \Omega(\log k)$, the probability that a *k*-mer contains duplicate *m*-mers is o(1/k).

By choosing $m = \Theta(\log k)$, the smallest factor of size m is unique w.h.p. $\rightarrow O(nm) = O(n \log k)$ for n queries (on average)

DENSIFIYING THE SPACE OF NECKLACES

DENSIFIYING THE SPACE OF NECKLACES BY RANKING

DENSIFIYING THE SPACE OF NECKLACES BY RANKING

Ranking: given a necklace $\langle x \rangle$, find *i* s.t. $\langle x \rangle$ is the *i*-th smallest necklace of size *k* We can compute the rank in $\mathcal{O}(k^2)$ time [Sawada & Williams 17]

Tradeoff: better locality + compression vs $\mathcal{O}(k^2)$ queries

Ranking in $\mathcal{O}(k^2)$ is generally too expensive for our use case, but it might be faster to rank necklaces of consecutive *k*-mers.

Since most necklaces of consecutive words share the same starting position, they only differ by a single letter. AACGTCATCTCTCATTCTGGTCGTTCTTCCT AACGTCATCTCTCATTCTGTTCGTTCTTCCT

Formulation in the binary case ($\sigma = 2$) How does the rank of $\langle x \rangle$ change if we flip its *i*-th bit?

CONCLUSION

TAKE-HOME MESSAGES & OPEN QUESTIONS

Indexing *k*-mers with their necklaces:

- preserves locality
- improves compression
- fits in well with a quotiented data structure
- combines easily with dynamic operations

Future questions:

- What is the average distance between necklaces of consecutive *k*-mers?
- · Can we rank necklaces in subquadratic time?
- Can we accelerate ranking for necklaces of consecutive *k*-mers?

TAKE-HOME MESSAGES & OPEN QUESTIONS

Indexing *k*-mers with their necklaces:

- preserves locality
- improves compression
- fits in well with a quotiented data structure
- combines easily with dynamic operations

Future questions:

- What is the average distance between necklaces of consecutive *k*-mers?
- Can we rank necklaces in subquadratic time?
- Can we accelerate ranking for necklaces of consecutive *k*-mers?

Thank you!

- Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). **"Succinct k-mer sets using subset rank queries on the spectral burrows-wheeler transform".** In: *bioRxiv*, pp. 2022–05.
- Conway, Thomas C & Andrew J Bromage (2011). **"Succinct data structures for assembling large genomes".** In: *Bioinformatics* 27.4, pp. 479–486.
- Sawada, Joe & Aaron Williams (2017). "Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences". In: Journal of Discrete Algorithms 43, pp. 95–110.
- Zheng, Hongyu, Carl Kingsford & Guillaume Marçais (2020). **"Improved design and analysis of practical minimizers".** In: *Bioinformatics* 36.Supplement_1, pp. i119–i127.