Using necklaces to build a Locality-preserving and dynamic INDEX FOR K-MERS

Igor MARTAYAN, Bastien CAZAUX, Antoine LIMASSET \& Camille MARCHET
December 14, 2023
Seminar on Lyndon words - Rouen

dNA Sequencing \& Tokenization with k-mers

DNA samples $\stackrel{\circ}{\circ} \longrightarrow$

\longrightarrow CTGAAATG ...

We typically index the words of size k (k-mers) instead of the sequence itself.

In practice, we usually consider $k \leqslant 63$ so that each k-mer fits inside a machine word.

CTGAA
TGAAA
GAAAT
AAATG

MOTIVATION OF THIS WORK

Plenty of compact data structures for storing k-mers ...but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway \& Bromage 11]

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$ $\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient
- index(ATAACGCCA) $=49,556$
- index (TAACGCCAT $)=198,227$
\rightarrow average distance of $4^{k} / 3$

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway \& Bromage 11]

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$ $\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient
- index(ATAACGCCA) $=49,556$
- index(TAACGCCAT) $=198,227$
\rightarrow average distance of $4^{k} / 3$
How can we improve this approach?

WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer
- dynamic: support insertion and deletion after construction
- efficient queries:
- membership
- enumeration
- insertion
- deletion
- locality-preserving: reduce cache misses when querying consecutive k-mers

PRESERVING LOCALITY WITH NECKLACES

A LOCALITY-PRESERVING ENCODING OF K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$

- $x \mapsto(\langle x\rangle$, rotation index $)$ is a reversible transformation
- necklaces of consecutive k-mers share long prefixes

A CLOSER LOOK AT THE LOCALITY OF NECKLACES

AACGTCATCTCTCATTCTGGTCGTTCTTCCT AACGTCATCTCTCATTCTGITCGTTCTTCCT AACGTCATCTCTCATTCTGTGCGTTCTTCCT AACGTCATCTCTCATTCTGTGAGTTCTTCCT AACGTCATCTCTCATTCTGTGACTTCTTCCT AACGTCATCTCTCATTCTGTGACATCTTCCT AACGTCATCTCTCATTCTGTGACACCTTCCT AACGTCATCTCTCATTCTGTGACACGTTCCT AACGTCATCTCTCATTCTGTGACACGCTCCT AACGTCATCTCTCATTCTGTGACACGCACCT AACGTCATCTCTCATTCTGTGACACGCAGCT AACGTCATCTCTCATTCTGTGACACGCAGGT AACGTCATCTCTCATTCTGTGACACGCAGGG ACACGCAGGGTACGTCATCTCTCATTCTGTG

Size of common prefix
between necklaces of successive k-mers ($k=31$)

PRACTICAL USE OF NECKLACES

Overview of our data structure (CBL)

Quotiented
data structure

Query x :

1. compute $\langle x\rangle$
2. split $\langle x\rangle$ as $q \| r$
3. look for (q, r)

Accelerating the computation of consecutive necklaces

Basic approach: compute every cyclic rotation and select the smallest in $\mathcal{O}(k)$. $\rightarrow \mathcal{O}(n k)$ for n queries

Better approach: amortize the computation cost for consecutive queries.

Key observation

Given a fixed m, if $\langle x\rangle$ does not start at one of the $m-1$ last positions of x, its prefix of size m is the smallest factor of size m in x.

Good news: we can keep track of the smallest factors of size m in $\mathcal{O}(1)$ amortized time using a monotone queue.

Accelerating the computation of consecutive necklaces

Faster necklace computation

Only consider the cyclic rotations that start:

- at one of the smallest factors of size m
- at one of the $m-1$ last positions

Useful property [Zheng et al. 20]

Assuming $m=\Omega(\log k)$, the probability that a k-mer contains duplicate m-mers is $o(1 / k)$.

$$
\text { By choosing } m=\Theta(\log k) \text {, }
$$

the smallest factor of size m is unique w.h.p.
$\rightarrow \mathcal{O}(n m)=\mathcal{O}(n \log k)$ for n queries (on average)

DENSIFIYING THE SPACE OF NECKLACES

Densifiying the space of necklaces by ranking

The number of necklaces of size k on an alphabet with σ letters is

$$
N(k)=\frac{1}{k} \sum_{d \mid k} \varphi\left(\frac{k}{d}\right) \sigma^{d} \sim \frac{\sigma^{k}}{k}
$$

so only a fraction $\frac{1}{k}$ of the universe is actually used

Densifiying the space of necklaces by ranking

The number of necklaces of size k on an alphabet with σ letters is

$$
N(k)=\frac{1}{k} \sum_{d \mid k} \varphi\left(\frac{k}{d}\right) \sigma^{d} \sim \frac{\sigma^{k}}{k}
$$

so only a fraction $\frac{1}{k}$ of the universe is actually used

Ranking: given a necklace $\langle x\rangle$, find i s.t. $\langle x\rangle$ is the i-th smallest necklace of size k We can compute the rank in $\mathcal{O}\left(k^{2}\right)$ time [Sawada \& Williams 17]

Tradeoff: better locality + compression vs $\mathcal{O}\left(k^{2}\right)$ queries

CAN WE DO better for consecutive necklaces? (I don't know yet)

Ranking in $\mathcal{O}\left(k^{2}\right)$ is generally too expensive for our use case, but it might be faster to rank necklaces of consecutive k-mers.

Since most necklaces of consecutive words share the same starting position, they only differ by a single letter. AACGTCATCTCTCATTCTGGTCGTTCTTCCT AACGTCATCTCTCATTCTGITCGTTCTTCCT

Formulation in the binary case ($\sigma=2$)

How does the rank of $\langle x\rangle$ change if we flip its i-th bit?

CONCLUSION

Take-home messages \& Open questions

Indexing k-mers with their necklaces:

- preserves locality
- improves compression
- fits in well with a quotiented data structure
- combines easily with dynamic operations

Future questions:
-What is the average distance between necklaces of consecutive k-mers?

- Can we rank necklaces in subquadratic time?
- Can we accelerate ranking for necklaces of consecutive k-mers?

Take-home messages \& Open questions

Indexing k-mers with their necklaces:

- preserves locality
- improves compression
- fits in well with a quotiented data structure
- combines easily with dynamic operations

Future questions:
-What is the average distance between necklaces of consecutive k-mers?

- Can we rank necklaces in subquadratic time?
- Can we accelerate ranking for necklaces of consecutive k-mers?
Thank you!

References I

Alanko, Jarno N, Simon J Puglisi \& Jaakko Vuohtoniemi (2022). "Succinct k-mer sets using subset rank queries on the spectral burrows-wheeler transform". In: bioRxiv, pp. 2022-05.
國 Conway, Thomas C \& Andrew J Bromage (2011). "Succinct data structures for assembling large genomes". In: Bioinformatics 27.4, pp. 479-486.
Rawada, Joe \& Aaron Williams (2017). "Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences". In: Journal of Discrete Algorithms 43, pp. 95-110.
R Zheng, Hongyu, Carl Kingsford \& Guillaume Marçais (2020). "Improved design and analysis of practical minimizers". In: Bioinformatics 36.Supplement_1, pp. i119-i127.

