A COMPRESSED, DYNAMIC AND LOCALITY-PRESERVING REPRESENTATION OF K-MER SETS FOR GENOMIC ANALYSIS

Igor MARTAYAN
November 10, 2023
RT MIA - Journée Réduction de Dimension - ENS Lyon
LL Université de Lille

CRIStAL

DNA SEQUENCING

DNA samples $\stackrel{\circ}{\circ} \longrightarrow$

\longrightarrow CTCGAGGATT ...

DNA SEQUENCING

DNA samples $\stackrel{\circ}{\circ} \longrightarrow$

\longrightarrow CTCGAGGATT ...

SRA database growth from 2012 to present

TOKENIZATION WITH K-MERS

$$
k \text {-mer: word of size } k
$$

CTGAAATG... CTGAA
we typically index the k-mers of a sequence
TGAAA
GAAAT
AAATG
most existing space-efficient data structures for storing k-mers are static (e.g. spectral BWT [Alanko et al. 22], SSHash [Pibiri 22])
[Conway \& Bromage 11]

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$
- since they're usually very sparse, we can use a sparse bitvector to store them

$$
\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11
$$

Limitations

- the data structure is static
- it's not cache-efficient
- index(ATGTC) $=237$
- index (TGTCG) $=950$
average distance of $4^{k} / 3$
[Conway \& Bromage 11]
- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$
- since they're usually very sparse, we can use a sparse bitvector to store them
$\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$

Limitations

- the data structure is static
- it's not cache-efficient
- index(ATGTC) $=237$
- index (TGTCG) $=950$
average distance of $4^{k} / 3$

Can we improve this approach?

THE QUEST FOR AN IDEAL DATA STRUCTURE

- space-efficient: close to the theoretical lower bound
- dynamic: support insertion and deletion after construction
- efficient queries:
- membership
- enumeration
- insertion
- deletion
- locality-preserving: reduce cache misses when querying consecutive k-mers (we often perform batch queries on many overlapping k-mers)

A COMPRESSED REPRESENTATION OF SPARSE INTEGER SETS

Under the hood: EliAs-Fano encoding

[Elias 74, Fano 71]

- separate the high bits and low bits
- pack the low bits together
- store the high bits in a bitvector

We choose the size of the low bits as

$$
l=\left\lceil\lg \frac{u}{n}\right\rceil
$$

where n is the number of elements and u is the size of the universe

$$
x=657: \quad 101 \underset{l}{\stackrel{0010001}{\longleftrightarrow}}
$$

Under the hood: EliAs-Fano encoding

$$
S=\{2,3,251,403,406,407,995,999\} \quad n=8 \quad u=1000 \quad l=\left\lceil\lg \frac{u}{n}\right\rceil=7 \text { bits }
$$

$$
\begin{array}{cc}
h_{i} & l_{i} \\
000 & 0000010 \\
000 & 0000011 \\
001 & 1111011 \\
011 & 0010011 \\
011 & 0010110 \\
011 & 0010111 \\
111 & 1100011 \\
111 & 1100111
\end{array}
$$

Under the hood: EliAs-Fano encoding

$$
S=\{2,3,251,403,406,407,995,999\} \quad n=8 \quad u=1000 \quad l=\left\lceil\lg \frac{u}{n}\right\rceil=7 \text { bits }
$$

$$
\begin{array}{c:c}
h_{i} & l_{i} \\
\hline 000 & 0000010 \\
000 & 0000011 \\
001 & 1111011 \\
011 & 0010011 \\
011 & 0010110
\end{array}
$$

Under the hood: Elias-Fano encoding

$$
S=\{2,3,251,403,406,407,995,999\} \quad n=8 \quad u=1000 \quad l=\left\lceil\lg \frac{u}{n}\right\rceil=7 \text { bits }
$$

$$
\begin{array}{c:c}
h_{i} & l_{i} \\
\hline 000 & 0000010 \\
000 & 0000011 \\
001 & 1111011 \\
011 & 0010011 \\
011 & 0010110 \\
011 & 0010111 \\
111 & 1100011 \\
111 & 1100111
\end{array}
$$

Under the hood: Elias-Fano encoding

$$
S=\{2,3,251,403,406,407,995,999\} \quad n=8 \quad u=1000 \quad l=\left\lceil\lg \frac{u}{n}\right\rceil=7 \text { bits }
$$

Under the hood: ELIAs-FANo encoding

$$
S=\{2,3,251,403,406,407,995,999\} \quad n=8 \quad u=1000 \quad l=\left\lceil\lg \frac{u}{n}\right\rceil=7 \text { bits }
$$

ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

$$
E F(n, u)=2 n+n\left\lceil\lg \frac{u}{n}\right\rceil
$$

Information theoretic lower bound

$$
\begin{aligned}
\lg \binom{u}{n} & \approx n \lg e+n \lg \frac{u}{n} \\
& \approx 1.44 n+n \lg \frac{u}{n}
\end{aligned}
$$

Note that the bound can get lower if we have additional knowledge about the distribution.

PARTITIONING THE SET

Partitioning the set [Ottaviano \& Venturini 14]

Partitioning the set [Ottaviano \& Venturini 14]

Main idea: split the sequence into smaller blocks,

Partitioning the set [Ottaviano \& Venturini 14]

Main idea: split the sequence into smaller blocks, choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; $2 n+n\left\lceil\lg \frac{u}{n}\right\rceil$ bits

Partitioning the set [Ottaviano \& Venturini 14]

Main idea: split the sequence into smaller blocks, choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; $2 n+n\left\lceil\lg \frac{u}{n}\right\rceil$ bits
- for dense blocks: plain bitset ; u bits

Partitioning the set [Ottaviano \& Venturini 14]

Main idea: split the sequence into smaller blocks, choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; $2 n+n\left\lceil\lg \frac{u}{n}\right\rceil$ bits
- for dense blocks: plain bitset ; u bits
- for full blocks: lower bound + size is enough

Partitioning the set [Ottaviano \& Venturini 14]

Main idea: split the sequence into smaller blocks, choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; $2 n+n\left\lceil\lg \frac{u}{n}\right\rceil$ bits
- for dense blocks: plain bitset ; u bits
- for full blocks: lower bound + size is enough

What is the optimal partition cost?

Reduction to shortest path [Ferragina et al. 11]

- $V=\llbracket 1, n \rrbracket \quad E=$ $\{i<j ; i, j \in V\}$
- $w_{i, j}=$ cost to encode $S[i, j]$

Reduction to shortest path [Ferragina et al. 11]

- $V=\llbracket 1, n \rrbracket \quad E=$ $\{i<j ; i, j \in V\}$
- $w_{i, j}=$ cost to encode $S[i, j]$

Computing the optimal partition

- optimal solution in $\mathcal{O}(|V|+|E|)=\mathcal{O}\left(n^{2}\right)$ using dynamic programming

Reduction to shortest path [Ferragina et al. 11]

- $V=\llbracket 1, n \rrbracket \quad E=$ $\{i<j ; i, j \in V\}$
- $w_{i, j}=$ cost to encode $S[i, j]$

Computing the optimal partition

- optimal solution in $\mathcal{O}(|V|+|E|)=\mathcal{O}\left(n^{2}\right)$ using dynamic programming
- $(1+\varepsilon)$-approximation in $\mathcal{O}\left(n \cdot \frac{1}{\varepsilon} \ln \frac{1}{\varepsilon}\right)$ by sparsifying the graph

Make it dynamic! [Pibiri \& Venturini 17]

Main idea: augment the partitioned data structure

- build a B+ tree on top of the partitions
- maintain a dynamic prefix sum
- maintain dynamic successors with a y-fast trie Good news: it only requires $o(n)$ extra space

Query complexity:

- membership and successor in $\mathcal{O}(\lg \lg n)$
- insertion and deletion in $\mathcal{O}(\lg n / \lg \lg n)$

BACK TO K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$

- $x \mapsto(\langle x\rangle$, rotation index $)$ is a bijective transformation
- necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)

RaNKING NECKLACES TO IMPROVE COMPRESSION

The number of necklaces of size k on an alphabet with σ letters is

$$
N(k)=\frac{1}{k} \sum_{d \mid k} \varphi\left(\frac{k}{d}\right) \sigma^{d} \sim \frac{\sigma^{k}}{k}
$$

Ranking: given a necklace $\langle x\rangle$, find i s.t. $\langle x\rangle$ is the i-th smallest necklace of size k We can compute the rank in $\mathcal{O}\left(k^{2}\right)$ time using Sawada's algorithm [Sawada \& Williams 17]

CONCLUSION

TAKE HOME MESSAGES

- k-mer sets are ubiquitous in bioinformatics
- Elias-Fano has a near-optimal space usage assuming we have no prior knowledge on the elements
- partitioning helps both in reducing space usage and making the structure dynamic
- a well-chosen encoding can significantly improve locality

TAKE HOME MESSAGES

- k-mer sets are ubiquitous in bioinformatics
- Elias-Fano has a near-optimal space usage assuming we have no prior knowledge on the elements
- partitioning helps both in reducing space usage and making the structure dynamic
- a well-chosen encoding can significantly improve locality

Thank you!

References I

Filanko, Jarno N, Simon J Puglisi \& Jaakko Vuohtoniemi (2022). "Succinct k-mer sets using subset rank queries on the spectral burrows-wheeler transform". In: bioRxiv, pp. 2022-05.
Conway, Thomas C \& Andrew J Bromage (2011). "Succinct data structures for assembling large genomes". In: Bioinformatics 27.4, pp. 479-486.

Elias, Peter (1974). "Efficient storage and retrieval by content and address of static files". In: Journal of the ACM (JACM) 21.2, pp. 246-260.
Fano, Robert Mario (1971). On the number of bits required to implement an associative memory. Massachusetts Institute of Technology, Project MAC.
國 Ferragina, Paolo, Igor Nitto \& Rossano Venturini (2011). "On optimally partitioning a text to improve its compression". In: Algorithmica 61, pp. 51-74.

References II

Ottaviano，Giuseppe \＆Rossano Venturini（2014）．＂Partitioned elias－fano indexes＂．In： Proceedings of the 37th international ACM SIGIR conference on Research \＆development in information retrieval，pp．273－282．
空
Pibiri，Giulio Ermanno（2022）．＂Sparse and skew hashing of k－mers＂．In：Bioinformatics 38．Supplement＿1，pp．i185－i194．
嘈
Pibiri，Giulio Ermanno \＆Rossano Venturini（2017）．＂Dynamic elias－fano representation＂．In： 28th Annual symposium on combinatorial pattern matching（CPM 2017）．Schloss Dagstuhl－Leibniz－Zentrum fuer Informatik．
固 Sawada，Joe \＆Aaron Williams（2017）．＂Practical algorithms to rank necklaces，Lyndon words， and de Bruijn sequences＂．In：Journal of Discrete Algorithms 43，pp．95－110．

