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DNA Sequencing

DNA samples −→ −→ CTCGAGGATT…
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Tokenization with k-mers

k-mer: word of size k

we typically index the k-mers of a sequence
instead of the sequence itself

CTGAAATG…
CTGAA
TGAAA
GAAAT
AAATG

most existing space-efficient data structures for storing k-mers are static
(e.g. spectral BWT [Alanko et al. 22], SSHash [Pibiri 22])
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k-mers as a sparse set of integers

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

• since they’re usually very sparse, we can
use a sparse bitvector to store them

A → 00 C → 01 G → 10 T → 11

Limitations
• the data structure is static
• it’s not cache-efficient

• index(ATGTC ) = 237
• index( TGTCG) = 950

average distance of 4k/3

Can we improve this approach?
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The quest for an ideal data structure

• space-efficient: close to the theoretical lower bound
• dynamic: support insertion and deletion after construction
• efficient queries:

• membership
• enumeration
• insertion
• deletion

• locality-preserving: reduce cache misses when querying consecutive k-mers
(we often perform batch queries on many overlapping k-mers)
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A compressed representation of
sparse integer sets



Under the hood: Elias-Fano encoding

[Elias 74, Fano 71]
• separate the high bits and low bits
• pack the low bits together
• store the high bits in a bitvector

We choose the size of the low bits as

l =
⌈
lg

u
n

⌉
where n is the number of elements
and u is the size of the universe

101 0010001x = 657 :

l

5/13



Under the hood: Elias-Fano encoding

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)
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Almost optimal space usage

Space usage of Elias-Fano

EF(n, u) = 2n + n
⌈
lg

u
n

⌉
Information theoretic lower bound

lg

(
u
n

)
≈ n lg e + n lg

u
n

≈ 1.44n + n lg
u
n

Note that the bound can get lower if we have
additional knowledge about the distribution.
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Partitioning the set



Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

What is the optimal partition cost?
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Reduction to shortest path [Ferragina et al. 11]

• V = J1,nK E =

{i < j ; i, j ∈ V}
• wi,j = cost to encode S [i, j]

1 2 … i … n

Computing the optimal partition

• optimal solution in O(|V |+ |E |) = O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
by sparsifying the graph
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Make it dynamic! [Pibiri & Venturini 17]

Main idea: augment the partitioned data structure
• build a B+ tree on top of the partitions
• maintain a dynamic prefix sum
• maintain dynamic successors with a y-fast trie

Good news: it only requires o(n) extra space

Query complexity:
• membership and
successor in O(lg lg n)

• insertion and deletion
in O(lg n / lg lg n)
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Back to k-mers



A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)
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Ranking necklaces to improve compression

The number of necklaces of size k on an alphabet with σ letters is

N (k) = 1
k
∑
d|k

ϕ

(
k
d

)
σd ∼ σk

k

so only a fraction 1
k of the universe is actually used

AAAA CCCC GGGG TTTT

Ranking: given a necklace 〈x〉, find i s.t. 〈x〉 is the i-th smallest necklace of size k
We can compute the rank in O

(
k2) time using Sawada’s algorithm

[Sawada & Williams 17]
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Conclusion



Take home messages

• k-mer sets are ubiquitous in bioinformatics

• Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

• partitioning helps both in reducing space usage and
making the structure dynamic

• a well-chosen encoding can significantly improve locality

Thank you!
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