Conway-Bromage-Lyndon (CBL):

AN EXACT, DYNAMIC REPRESENTATION OF K-MER SETS

Igor MARTAYAN, Bastien CAZAUX, Antoine LIMASSET \& Camille MARCHET University of Lille

July 14, 2024
ISMB 2024 - Montreal

MOTIVATION OF THIS WORK

Plenty of compact data structures for storing k-mers ...but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 23]

OUR FOCUS FOR THIS TALK

Goal: designing a dynamic index of k-mers with fast queries and relatively good compression

- membership

CTGAAATG...

- enumeration
- insertion
- deletion
- set operations (\cup, \cap, \backslash)
$\left.\begin{array}{c}\text { CTGAA } \\ \text { TGAAA } \\ \text { GAAAT } \\ \text { AAATG }\end{array}\right]$

Use case: build an index incrementally, merge/intersect multiple indexes...

NECKLACE TRANSFORMATION OF K-MERS

necklace:
smallest cyclic rotation of a word

$$
\begin{array}{ll}
\text { CGAACT } \\
\text { CGAACT } & \\
\text { GAACTC } & (1) \\
\text { AACTCG } & (2) \\
\text { ACTCGA } & (3) \\
\text { CTCGAA } & (4) \\
\text { TCGAAC }
\end{array}
$$

$x \longmapsto(\langle x\rangle$, rotation index $)$ is reversible

Amortized necklace computation

Consecutive necklaces can be computed in $\mathcal{O}(\log k)$ amortized time

In practice: $\sim 10 \mathrm{~ns} /$ necklace

LOCALITY OF THE NECKLACE TRANSFORMATION

$k-m e r$ view
GTCGTTCTTCCTAACGTCATCTCTCATTCTG
TCGTTCTTCCTAACGTCATCTCTCATTCTGT
CGTTCTTCCTAACGTCATCTCTCATTCTGTG
GTTCTTCCTAACGTCATCTCTCATTCTGTGA
TTCTTCCTAACGTCATCTCTCATTCTGTGAC
TCTTCCTAACGTCATCTCTCATTCTGTGACA
CTTCCTAACGTCATCTCTCATTCTGTGACAC
TTCCTAACGTCATCTCTCATTCTGTGACACG
TCCTAACGTCATCTCTCATTCTGTGACACGC
CCTAACGTCATCTCTCATTCTGTGACACGCA
CTAACGTCATCTCTCATTCTGTGACACGCAG
TAACGTCATCTCTCATTCTGTGACACGCAGG
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACGTCATCTCTCATTCTGTGACACGCAGGGT

LOCALITY OF THE NECKLACE TRANSFORMATION

necklace view
AACGTCATCTCTCATTCTG GTCGTTCTTCCT AACGTCATCTCTCATTCTGT TCGTTCTTCCT AACGTCATCTCTCATTCTGTG CGTTCTTCCT AACGTCATCTCTCATTCTGTGA GTTCTTCCT AACGTCATCTCTCATTCTGTGAC TTCTTCCT AACGTCATCTCTCATTCTGTGACA TCTTCCT AACGTCATCTCTCATTCTGTGACAC CTTCCT AACGTCATCTCTCATTCTGTGACACG TTCCT AACGTCATCTCTCATTCTGTGACACGC TCCT AACGTCATCTCTCATTCTGTGACACGCA CCT AACGTCATCTCTCATTCTGTGACACGCAG CT AACGTCATCTCTCATTCTGTGACACGCAGG T AACGTCATCTCTCATTCTGTGACACGCAGGG ACACGCAGGGT ACGTCATCTCTCATTCTGTG
k-mer view
GTCGTTCTTCCTAACGTCATCTCTCATTCTG TCGTTCTTCCTAACGTCATCTCTCATTCTGT CGTTCTTCCTAACGTCATCTCTCATTCTGTG GTTCTTCCTAACGTCATCTCTCATTCTGTGA TTCTTCCTAACGTCATCTCTCATTCTGTGAC TCTTCCTAACGTCATCTCTCATTCTGTGACA CTTCCTAACGTCATCTCTCATTCTGTGACAC tTCCTAACGTCATCTCTCATTCTGTGACACG tCCTAACGTCATCTCTCATTCTGTGACACGC CCTAACGTCATCTCTCATTCTGTGACACGCA CTAACGTCATCTCTCATTCTGTGACACGCAG tAACGTCATCTCTCATTCTGTGACACGCAGG AACGTCATCTCTCATTCTGTGACACGCAGGG ACGTCATCTCTCATTCTGTGACACGCAGGGT

LOCALITY OF THE NECKLACE TRANSFORMATION

necklace view

	GTCGITCTICCT
AACGTCATCTCTCATTCTG	tCGTtcttcct
AacGtcatctctcattctg	g cgttcticct
acGtcatctctcattctg	TGA Gttcticct
AACGTCATCTCTCATTCTG	tgac ttcticct
acgtcatctctcattctg	tgaca tcttcct
AACGTCATCTCTCATTCTG	tgacac cttcct
AACGTCATCTCTCATTCTG	tgacacg t
AACGTCATCTCTCATTCTG	tgacacgi
AACGTCATCTCTCATTCT	tgacacgca
AACGTCATCTCTCATTCTG	tgacacgcag
AACGTCATCTCTCATTCT	tgacacgcagg
AACGTCATCTCTCATTCTG	TGACACGC

k-mer view
GTCGTTCTTCCTAACGTCATCTCTCATTCTG TCGTTCTTCCTAACGTCATCTCTCATTCTGT CGTTCTTCCTAACGTCATCTCTCATTCTGTG GTTCTTCCTAACGTCATCTCTCATTCTGTGA TTCTTCCTAACGTCATCTCTCATTCTGTGAC TCTTCCTAACGTCATCTCTCATTCTGTGACA CTTCCTAACGTCATCTCTCATTCTGTGACAC tTCCTAACGTCATCTCTCATTCTGTGACACG tCCTAACGTCATCTCTCATTCTGTGACACGC CCTAACGTCATCTCTCATTCTGTGACACGCA CTAACGTCATCTCTCATTCTGTGACACGCAG tAACGTCATCTCTCATTCTGTGACACGCAGG AACGTCATCTCTCATTCTGTGACACGCAGGG ACGTCATCTCTCATTCTGTGACACGCAGGGT

LOCALITY OF THE NECKLACE TRANSFORMATION

necklace view

LOCALITY OF THE NECKLACE TRANSFORMATION

necklace view

DESIGNING A DATA STRUCTURE TO STORE NECKLACES (CBL)

necklaces
■

quotienting

suffixes

Designing a data structure to store necklaces (CBL)

necklaces

suffixes

Conway-Bromage-Lyndon

Designing a data structure to store necklaces (CBL)

Main query steps:

1. compute $\langle x\rangle$
2. split $\langle x\rangle$ as $q \| r$
3. query r in the bucket of q
\rightarrow faster for consecutive k-mers (likely in the same bucket)

Conway-Bromage-Lyndon

COMPARISON WITH SOME K-MER SET DATA STRUCTURES

category	data structure	membership	insert	delete	$\cup \cap \backslash$
BWT	FM-index	\checkmark	\times	\times	\times
-	SBWT	\checkmark	\times	\times	\times
-	dynamic BOSS	\checkmark	\checkmark	\checkmark	\times
hashing	SSHash	\checkmark	\times	\times	\times
-	Bifrost	\checkmark	\checkmark	\times	\times
-	Bloom filter	approx	\checkmark	\times	union
-	Quotient filter	approx*	\checkmark	\times	union
other	Conway-Bromage	\checkmark	\checkmark	\checkmark	\checkmark
-	CBL	\checkmark	\checkmark	\checkmark	\checkmark

*exact if a perfect hash function is used

TIme/space usage for collections of bacterial genomes from Refseq ($\kappa=31$)

TLDR: almost as fast as a hash table, $\sim 40-50$ bits $/ k$-mer ($k=31$)

Merging collections of bacterial genomes from RefSeQ ($\kappa=31$)

TLDR: $4 \times$ faster and $3 \times$ smaller than a hash table when merging a billion k-mers

WHAT'S NEXT?

Improving CBL's memory usage:

- suffixes among the same bucket are similar and can be compressed
- better layout of the tries (e.g. adaptive radix tries)

Extending the data structure:

- associate data (e.g. abundance) to each k-mer \rightarrow CBL Map
- concurrent version (distribute suffix buckets between threads)

Using CBL to enumerate k-mers satisfying a given constraint e.g. find k-mers present in ref A and B but not in $C \longrightarrow$ preprint:

TAKE-HOME MESSAGES

- new dynamic structure based on necklaces
- very fast queries, cache efficient
- limited memory usage (~ 40 bpk for $k=31$)
- supports fast insertion, deletion \& set ops
- available as a CLI and a Rust library

Thank you!

github.com/imartayan/CBL

Paper

ReFERENCES

Alanko，Jarno N．，Simon J．Puglisi \＆Jaakko Vuohtoniemi（2023）．＂Small Searchable κ－Spectra via Subset Rank Queries on the Spectral Burrows－Wheeler Transform＂．In：ACDA23，pp．225－236．
國 Bille，Philip et al．（2017）．＂Fast Dynamic Arrays＂．In：LIPIcs 87，16：1－16：13．ISSN：1868－8969．
國 Conway，Thomas C \＆Andrew J Bromage（2011）．＂Succinct data structures for assembling large genomes＂． In：Bioinformatics 27．4，pp．479－486．
Marchini，Stefano \＆Sebastiano Vigna（2020）．＂Compact Fenwick trees for dynamic ranking and selection＂． In：Software：Practice and Experience 50．7，pp．1184－1202．
Pibiri，Giulio Ermanno \＆Shunsuke Kanda（2021）．＂Rank／select queries over mutable bitmaps＂．In： Information Systems 99，p． 101756.

Sawada，Joe \＆Aaron Williams（2017）．＂Practical algorithms to rank necklaces，Lyndon words，and de Bruijn sequences＂．In：Journal of Discrete Algorithms 43，pp．95－110．

Zheng，Hongyu，Carl Kingsford \＆Guillaume Marçais（2020）．＂Improved design and analysis of practical minimizers＂．In：Bioinformatics 36．Supplement＿1，pp．i119－i127．

QUICKLY COMPUTING STREAMS OF NECKLACES

Basic approach: compute every cyclic rotation and select the smallest in $\mathcal{O}(k)$.
$\rightarrow \mathcal{O}(n k)$ for n necklaces

Better: amortize the computation for consecutive k-mers.

Key observation

If $\langle x\rangle$ does not start at one of the $m-1$ last positions of x, its prefix of size m is the smallest factor of size m in x.

Good news: we can keep track of the smallest factors of size m in $\mathcal{O}(1)$ amortized time using a monotone queue.

QUICKLY COMPUTING STREAMS OF NECKLACES

Faster necklace computation

Only consider the cyclic rotations that start:

- at one of the smallest factors of size m
- at one of the $m-1$ last positions

Useful property [Zheng et al. 20]

Assuming $m=\Omega(\log k)$, the probability that a k-mer contains duplicate m-mers is $o(1 / k)$.

$$
\text { By choosing } m=\Theta(\log k) \text {, }
$$

the smallest factor of size m is unique w.h.p.
$\rightarrow \mathcal{O}(n m)=\mathcal{O}(n \log k)$ for n necklaces (on avg)

Densifiying the space of necklaces by ranking

The number of necklaces of size k on an alphabet with σ letters is

$$
N(k)=\frac{1}{k} \sum_{d \mid k} \varphi\left(\frac{k}{d}\right) \sigma^{d} \sim \frac{\sigma^{k}}{k}
$$

so only a fraction $\frac{1}{k}$ of the universe is actually used

Ranking: given a necklace $\langle x\rangle$, find i s.t. $\langle x\rangle$ is the i-th smallest necklace of size k
We can compute the rank in $\mathcal{O}\left(k^{2}\right)$ time [Sawada \& Williams 17]
Tradeoff: better locality + compression vs $\mathcal{O}\left(k^{2}\right)$ queries

