Conway-Bromage-Lyndon (CBL):

AN EXACT, DYNAMIC REPRESENTATION OF K-MER SETS

Igor MARTAYAN, Bastien CAZAUX, Antoine LIMASSET \& Camille MARCHET
March 15, 2024
DSB 2024 - Montpellier

MOTIVATION OF THIS WORK

Plenty of compact data structures for storing k-mers ...but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

OUR FOCUS FOR THIS TALK

Goal: designing a dynamic index of k-mers with fast queries and relatively good compression

- membership
- enumeration
- insertion
- deletion
- set operations (\cup, \cap, \backslash)

CTGAAATG...

Starting from a simple idea: K-Mers as a sparse set of integers

Limitations:

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$ $\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$
- since they're usually very sparse, we can store them in a sparse bitvector (as in [Conway \& Bromage 11])
- difficult to compress (especially if it's dynamic)
- not cache-efficient
$i d(A T G G C A) \ll i d(T G G C A T)$ (average distance of $4^{k} / 3$)

Starting from a simple idea: K-Mers as a sparse set of integers

Limitations:

- we can see k-mers as integers in $\llbracket 4^{k} \rrbracket$ $\mathrm{A} \rightarrow 00 \quad \mathrm{C} \rightarrow 01 \quad \mathrm{G} \rightarrow 10 \quad \mathrm{~T} \rightarrow 11$
- since they're usually very sparse, we can store them in a sparse bitvector (as in [Conway \& Bromage 11])
- difficult to compress (especially if it's dynamic)
- not cache-efficient
$i d(A T G G C A) \ll i d(T G G C A T)$ (average distance of $4^{k} / 3$)
What if we changed our representation of k-mers?

THE NECKLACE TRANSFORMATION

NECKLACE TRANSFORMATION OF K-MERS

The necklace of x is its smallest cyclic rotation $\langle x\rangle=\min _{0 \leqslant i<k} x^{(i)}$
To make this transformation reversible, keep track of the rotation index

$$
x \longmapsto(\langle x\rangle, \text { rotation index })
$$

NeCKLACES OF CONSECUTIVE K-MERS SHARE LONG PREFIXES

$k-m e r$ view
GTCGTTCTTCCTAACGTCATCTCTCATTCTG
TCGTTCTTCCTAACGTCATCTCTCATTCTGT
CGTTCTTCCTAACGTCATCTCTCATTCTGTG
GTTCTTCCTAACGTCATCTCTCATTCTGTGA
TTCTTCCTAACGTCATCTCTCATTCTGTGAC
TCTTCCTAACGTCATCTCTCATTCTGTGACA
CTTCCTAACGTCATCTCTCATTCTGTGACAC
TTCCTAACGTCATCTCTCATTCTGTGACACG
TCCTAACGTCATCTCTCATTCTGTGACACGC
CCTAACGTCATCTCTCATTCTGTGACACGCA
CTAACGTCATCTCTCATTCTGTGACACGCAG
TAACGTCATCTCTCATTCTGTGACACGCAGG
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACGTCATCTCTCATTCTGTGACACGCAGGGT

NeCKLACES OF CONSECUTIVE K-MERS SHARE LONG PREFIXES

> necklace view AACGTCATCTCTCATTCTG GTCGTTCTTCCT AACGTCATCTCTCATTCTGT TCGTTCTTCT AACGTCATCTCTCATTCTGTG CGTTCTTCCT AACGTCATCTCTCATTCTGTGA GTTCTTCCT AACGTCATCTCTCATTCTGTGAC TTCTTCT AACGTCATCTCTCATTCTGTGACA TCTTCCT AACGTCATCTCTCATTCTGTGACAC CTTCCT AACGTCATCTCTCATTCTGTGACACG TTCT AACGTCATCTCTCATTCTGTGACACGC TCCT AACGTCATCTCTCATTCTGTGACACGCA CCT AACGTCATCTCTCATTCTGTGACACGCAG CT AACGTCATCTCTCATTCTGTGACACGCAGG T AACGTCATCTCTCATTCTGTGACACGCAGGG ACACGCAGGGT ACGTCATCTCTCATTCTGTG
k-mer view
GTCGTTCTTCCTAACGTCATCTCTCATTCTG TCGTTCTTCCTAACGTCATCTCTCATTCTGT CGTTCTTCCTAACGTCATCTCTCATTCTGTG GTTCTTCCTAACGTCATCTCTCATTCTGTGA TTCTTCCTAACGTCATCTCTCATTCTGTGAC TCTTCCTAACGTCATCTCTCATTCTGTGACA CTTCCTAACGTCATCTCTCATTCTGTGACAC tTCCTAACGTCATCTCTCATTCTGTGACACG tCCTAACGTCATCTCTCATTCTGTGACACGC CCTAACGTCATCTCTCATTCTGTGACACGCA CTAACGTCATCTCTCATTCTGTGACACGCAG TAACGTCATCTCTCATTCTGTGACACGCAGG AACGTCATCTCTCATTCTGTGACACGCAGGG acGTCATCTCTCATTCTGTGACACGCAGGGT

NeCKLACES OF CONSECUTIVE K-MERS SHARE LONG PREFIXES

necklace view

AACGTCATCTCTCATTCTG GTCGTTCTTCCT AACGTCATCTCTCATTCTGT TCGTTCTTCCT AACGTCATCTCTCATTCTGTG CGTTCTTCCT AACGTCATCTCTCATTCTGTGA GTTCTTCCT AACGTCATCTCTCATTCTGTGAC TTCTTCCT AACGTCATCTCTCATTCTGTGACA TCTTCCT AACGTCATCTCTCATTCTGTGACAC CTTCCT AACGTCATCTCTCATTCTGTGACACG TTCCT AACGTCATCTCTCATTCTGTGACACGC TCCT AACGTCATCTCTCATTCTGTGACACGCA CCT
 AACGTCATCTCTCATTCTGTGACACGCAG CT AACGTCATCTCTCATTCTGTGACACGCAGG T AACGTCATCTCTCATTCTGTGACACGCAGGG

QUICKLY COMPUTING STREAMS OF NECKLACES

Basic approach: compute every cyclic rotation and select the smallest in $\mathcal{O}(k)$.
$\rightarrow \mathcal{O}(n k)$ for n necklaces

Better: amortize the computation for consecutive k-mers.

Key observation

If $\langle x\rangle$ does not start at one of the $m-1$ last positions of x, its prefix of size m is the smallest factor of size m in x.

Good news: we can keep track of the smallest factors of size m in $\mathcal{O}(1)$ amortized time using a monotone queue.

QUICKLY COMPUTING STREAMS OF NECKLACES

Faster necklace computation

Only consider the cyclic rotations that start:

- at one of the smallest factors of size m
- at one of the $m-1$ last positions

Useful property [Zheng et al. 20]

Assuming $m=\Omega(\log k)$, the probability that a k-mer contains duplicate m-mers is $o(1 / k)$.

By choosing $m=\Theta(\log k)$,
the smallest factor of size m is unique w.h.p.
$\rightarrow \mathcal{O}(n m)=\mathcal{O}(n \log k)$ for n necklaces (on avg)

DESIGN OF THE DATA STRUCTURE

Quotienting the prefixes of necklaces

Quotienting:

- avoids redundancy
- groups consecutive necklaces

Under the hood:

- store the prefixes in a dynamic bitvector supporting rank/select [Marchini \& Vigna 20, Pibiri \& Kanda 21]
- associate suffix buckets using a tiered vector (for fast dynamic insertions) [Bille et al. 17]

SCALING THE SUFFIX BUCKETS

The structure of the buckets changes dynamically as we add/remove k-mers

- for small buckets: packed vector, linear search
- for large buckets: trie, logarithmic search

LAYOUT OF CBL'S DATA STRUCTURE

1. compute $\langle x\rangle$
2. split $\langle x\rangle$ as $q \| r$
3. query r in the bucket of q
\rightarrow faster for
consecutive k-mers

plain necklace vector

CBL's data-structure

COMPARISON TO SOME EXISTING TOOLS

category	data structure	membership	insert	delete	$\cup \cap \backslash$
BWT	FM-index	\checkmark	\times	\times	\times
-	SBWT	\checkmark	\times	\times	\times
-	dynamic BOSS	\checkmark	\checkmark	\checkmark	\times
hashing	SSHash	\checkmark	\times	\times	\times
-	Bifrost	\checkmark	\checkmark	\times	\times
-	Brisk	\checkmark	\checkmark	\times	\times
-	Bloom filter	approx	\checkmark	\times	union
-	Quotient filter	approx*	\checkmark	\times	union
other	Conway-Bromage	\checkmark	\checkmark	\checkmark	\checkmark
-	CBL	\checkmark	\checkmark	\checkmark	\checkmark

[^0]
Time/memory usage for collections of bacterial genomes from Refseq

| \bullet CBL | \square | SBWT | SBW |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \star | SSHash | Bifrost | |

\bullet	CBL	\square	SBWT
\star	SSHash	\Downarrow	Bifrost

TLDR: almost as fast as a hash table, more memory-efficient

Merging collections of bacterial genomes from RefSeq

TLDR: $4 \times$ faster and $3 \times$ smaller than a hash table when merging a billion 31 -mers

WHAT'S NEXT?

FUTURE STEPS

Improvements of the current structure:

- handle streams of k-mers
- improve buckets' memory usage
(some ideas: smaller single buckets, adaptive radix trie)
- use SIMD for core operations

Extending the structure:

- concurrent version of CBL (distribute suffix buckets between threads)
- associate data (e.g. count) to each k-mer (\rightarrow map structure)
[Your suggestion here]: let's discuss!

TAKE-HOME MESSAGES

- new dynamic structure based on necklaces
- available as a CLI and a Rust library
- very fast queries, cache efficient
- limited memory usage
- scales for large collections
- versatile operations

Thank you!

```
Try it here:
github.com/imartayan/CBL
```


Preprint (accepted to ISMB)

ReFERENCES

Alanko，Jarno N，Simon J Puglisi \＆Jaakko Vuohtoniemi（2022）．＂Succinct k－mer sets using subset rank queries on the spectral burrows－wheeler transform＂．In：bioRxiv，pp．2022－05．
囯 Bille，Philip et al．（2017）．＂Fast dynamic arrays＂．In：arXiv preprint arXiv：1711．00275．
國 Conway，Thomas C \＆Andrew J Bromage（2011）．＂Succinct data structures for assembling large genomes＂． In：Bioinformatics 27．4，pp．479－486．
Marchini，Stefano \＆Sebastiano Vigna（2020）．＂Compact Fenwick trees for dynamic ranking and selection＂． In：Software：Practice and Experience 50．7，pp．1184－1202．
Pibiri，Giulio Ermanno \＆Shunsuke Kanda（2021）．＂Rank／select queries over mutable bitmaps＂．In： Information Systems 99，p． 101756.
Sawada，Joe \＆Aaron Williams（2017）．＂Practical algorithms to rank necklaces，Lyndon words，and de Bruijn sequences＂．In：Journal of Discrete Algorithms 43，pp．95－110．

Zheng，Hongyu，Carl Kingsford \＆Guillaume Marçais（2020）．＂Improved design and analysis of practical minimizers＂．In：Bioinformatics 36．Supplement＿1，pp．i119－i127．

Densifiying the space of necklaces by ranking

The number of necklaces of size k on an alphabet with σ letters is

$$
N(k)=\frac{1}{k} \sum_{d \mid k} \varphi\left(\frac{k}{d}\right) \sigma^{d} \sim \frac{\sigma^{k}}{k}
$$

so only a fraction $\frac{1}{k}$ of the universe is actually used

Ranking: given a necklace $\langle x\rangle$, find i s.t. $\langle x\rangle$ is the i-th smallest necklace of size k
We can compute the rank in $\mathcal{O}\left(k^{2}\right)$ time [Sawada \& Williams 17]
Tradeoff: better locality + compression vs $\mathcal{O}\left(k^{2}\right)$ queries

[^0]: *exact if a PHF is used

